[1] D’ANGELO, S. P., CATHERINE PIETANZA, M., JOHNSON, M. L., RIELY, G. J., MILLER, V. A., SIMA, C. S., ZAKOWSKI, M. F., RUSCH, V.
W., LADANYI, M., & KRIS, M. G. (2011). Incidence of EGFR Exon 19 Deletions and L858R in Tumor Specimens From Men and Cigarette Smokers With Lung Adenocarcinomas. Journal of Clinical Oncology, 29 (15), 2066-2070.
[2] Bannoura, S. F., Khan, H. Y., & Azmi, A. S. (2022). KRAS G12D targeted therapies for pancreatic cancer: Has the fortress been conquered?
Frontiers in Oncology, 12, 1013902-1013902.
[3] Gong, J., Chehrazi-Raffle, A., Reddi, S., & Salgia, R. (2018). Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. Journal for Immunotherapy of Cancer, 6 (1), 8-18.
[4] Bonaventura, P., Shekarian, T., Alcazer, V., Valladeau-Guilemond, J., Valsesia-Wittmann, S., Amigorena, S., Caux, C., & Depil, S. (2019). Cold Tumors: A Therapeutic Challenge for Immunotherapy. Frontiers in Immunology, 10, 168-168.
[5] Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., Ly, A., Lie, W.-R., Hildebrand, W. H., Mardis, E. R., & Linette, G. P. (2015). A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science (American Association for the Advancement of Science), 348 (6236), 803-808.
[6] Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J., Bozym, D. J., Zhang, W., Luoma, A., Giobbie-Hurder, A., Peter, L., Chen, C., Olive, O., Carter, T. A., Li, S., Lieb, D. J., Eisenhaure, T., Gjini, E., Stevens, J., Lane, W. J., … Wu, C. J. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature (London), 547 (7662), 217-221.
[7] Sahin, U., Derhovanessian, E., Miller, M., Kloke, B.-P., Simon, P., Löwer, M., Bukur, V., Tadmor, A. D., Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J., Heesch, S., Schreeb, K. H., Müller, F., … Türeci, Ö. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature (London), 547 (7662), 222–226.
[8] Blass, E., & Ott, P. A. (2021). Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews. Clinical Oncology, 18 (4), 215–229.
[9] Merck. (2023). Moderna and Merck Announce mRNA-4157 (V940), an Investigational Individualized Neoantigen Therapy, in Combination With KEYTRUDA® (pembrolizumab), Demonstrated Superior Recurrence-Free Survival in Patients With High-Risk Stage III/IV Melanoma Following Complete Resection Versus KEYTRUDA.
https://www.merck.com/news/moderna-and-merck-announce-mrna-4157-v940-an-investigational-individualized-neoantigen-therapy-in- combination-with-keytruda-pembrolizumab-demonstrated-superior-recurrence-free-survival-in/
[10] Sabado, R. L., Balan, S., & Bhardwaj, N. (2017). Dendritic cell-based immunotherapy. Cell research, 27 (1), 74–95.
[11] Bod, L., Kye, Y. C., Shi, J., Torlai Triglia, E., Schnell, A., Fessler, J., Ostrowski, S. M., Von-Franque, M. Y., Kuchroo, J. R., Barilla, R. M., Zaghouani, S., Christian, E., Delorey, T. M., Mohib, K., Xiao, S., Slingerland, N., Giuliano, C. J., Ashenberg, O., Li, Z., Rothstein, D. M., … Kuchroo, V.
K. (2023). B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature, 10.1038/s41586-023-06231-0. Advance online publication.